Proliferation Of Nuclear Weapons Essay

See also: Chemical weapon proliferation

Nuclear proliferation is the spread of nuclear weapons, fissionable material, and weapons-applicable nuclear technology and information to nations not recognized as "Nuclear Weapon States" by the Treaty on the Non-Proliferation of Nuclear Weapons, commonly known as the Non-Proliferation Treaty or NPT. Proliferation has been opposed by many nations with and without nuclear weapons, the governments of which fear that more countries with nuclear weapons may increase the possibility of nuclear warfare (up to and including the so-called "countervalue" targeting of civilians with nuclear weapons), de-stabilize international or regional relations, or infringe upon the national sovereignty of states.

Four countries besides the five recognized Nuclear Weapons States have acquired, or are presumed to have acquired, nuclear weapons: India, Pakistan, North Korea, and Israel. None of these four is a party to the NPT, although North Korea acceded to the NPT in 1985, then withdrew in 2003 and conducted announced nuclear tests in 2006, 2009, 2013, 2016, and 2017.[1] One critique of the NPT is that it is discriminatory in recognizing as nuclear weapon states only those countries that tested nuclear weapons before 1968 and requiring all other states joining the treaty to forswear nuclear weapons.[citation needed]

Research into the development of nuclear weapons was undertaken during World War II by the United States (in cooperation with the United Kingdom and Canada), Germany, Japan, and the USSR. The United States was the first and is the only country to have used a nuclear weapon in war, when it used two bombs against Japan in August 1945. With their loss during the war, Germany and Japan ceased to be involved in any nuclear weapon research. In August 1949, the USSR tested a nuclear weapon.[2] The United Kingdom tested a nuclear weapon in October 1952. France developed a nuclear weapon in 1960. The People's Republic of China detonated a nuclear weapon in 1964. India exploded a nuclear device in 1974, and Pakistan conducted a series of nuclear weapon tests in May 1998, following tests by India earlier that month. In 2006, North Korea conducted its first nuclear test.

Non-proliferation efforts[edit]

Early efforts to prevent nuclear proliferation involved intense government secrecy, the wartime acquisition of known uranium stores (the Combined Development Trust), and at times even outright sabotage—such as the bombing of a heavy-water facility thought to be used for a German nuclear program. None of these efforts were explicitly public, because the weapon developments themselves were kept secret until the bombing of Hiroshima.

Earnest international efforts to promote nuclear non-proliferation began soon after World War II, when the Truman Administration proposed the Baruch Plan[3] of 1946, named after Bernard Baruch, America's first representative to the United Nations Atomic Energy Commission. The Baruch Plan, which drew heavily from the Acheson–Lilienthal Report of 1946, proposed the verifiable dismantlement and destruction of the U.S. nuclear arsenal (which, at that time, was the only nuclear arsenal in the world) after all governments had cooperated successfully to accomplish two things: (1) the establishment of an "international atomic development authority," which would actually own and control all military-applicable nuclear materials and activities, and (2) the creation of a system of automatic sanctions, which not even the U.N. Security Council could veto, and which would proportionately punish states attempting to acquire the capability to make nuclear weapons or fissile material.

Baruch's plea for the destruction of nuclear weapons invoked basic moral and religious intuitions. In one part of his address to the UN, Baruch said, "Behind the black portent of the new atomic age lies a hope which, seized upon with faith, can work out our salvation. If we fail, then we have damned every man to be the slave of Fear. Let us not deceive ourselves. We must elect World Peace or World Destruction.... We must answer the world's longing for peace and security."[4] With this remark, Baruch helped launch the field of nuclear ethics, to which many policy experts and scholars have contributed.

Although the Baruch Plan enjoyed wide international support, it failed to emerge from the UNAEC because the Soviet Union planned to veto it in the Security Council. Still, it remained official American policy until 1953, when President Eisenhower made his "Atoms for Peace" proposal before the U.N. General Assembly. Eisenhower's proposal led eventually to the creation of the International Atomic Energy Agency (IAEA) in 1957. Under the "Atoms for Peace" program thousands of scientists from around the world were educated in nuclear science and then dispatched home, where many later pursued secret weapons programs in their home country.[5]

Efforts to conclude an international agreement to limit the spread of nuclear weapons did not begin until the early 1960s, after four nations (the United States, the Soviet Union, the United Kingdom and France) had acquired nuclear weapons (see List of states with nuclear weapons for more information). Although these efforts stalled in the early 1960s, they renewed once again in 1964, after China detonated a nuclear weapon. In 1968, governments represented at the Eighteen Nation Disarmament Committee (ENDC) finished negotiations on the text of the NPT. In June 1968, the U.N. General Assembly endorsed the NPT with General Assembly Resolution 2373 (XXII), and in July 1968, the NPT opened for signature in Washington, DC, London and Moscow. The NPT entered into force in March 1970.

Since the mid-1970s, the primary focus of non-proliferation efforts has been to maintain, and even increase, international control over the fissile material and specialized technologies necessary to build such devices because these are the most difficult and expensive parts of a nuclear weapons program. The main materials whose generation and distribution is controlled are highly enriched uranium and plutonium. Other than the acquisition of these special materials, the scientific and technical means for weapons construction to develop rudimentary, but working, nuclear explosive devices are considered to be within the reach of industrialized nations.

Since its founding by the United Nations in 1957, the International Atomic Energy Agency (IAEA) has promoted two, sometimes contradictory, missions: on the one hand, the Agency seeks to promote and spread internationally the use of civilian nuclear energy; on the other hand, it seeks to prevent, or at least detect, the diversion of civilian nuclear energy to nuclear weapons, nuclear explosive devices or purposes unknown. The IAEA now operates a safeguards system as specified under Article III of the Nuclear Non-Proliferation Treaty (NPT) of 1968, which aims to ensure that civil stocks of uranium, plutonium, as well as facilities and technologies associated with these nuclear materials, are used only for peaceful purposes and do not contribute in any way to proliferation or nuclear weapons programs. It is often argued that proliferation of nuclear weapons to many other states has been prevented by the extension of assurances and mutual defence treaties to these states by nuclear powers, but other factors, such as national prestige, or specific historical experiences, also play a part in hastening or stopping nuclear proliferation.[6]

Dual use technology[edit]

Dual-use technology refers to the possibility of military use of civilian nuclear power technology. Many technologies and materials associated with the creation of a nuclear power program have a dual-use capability, in that several stages of the nuclear fuel cycle allow diversion of nuclear materials for nuclear weapons. When this happens a nuclear power program can become a route leading to the atomic bomb or a public annex to a secret bomb program. The crisis over Iran’s nuclear activities is a case in point.[7]

Many UN and US agencies warn that building more nuclear reactors unavoidably increases nuclear proliferation risks.[8] A fundamental goal for American and global security is to minimize the proliferation risks associated with the expansion of nuclear power. If this development is "poorly managed or efforts to contain risks are unsuccessful, the nuclear future will be dangerous".[7] For nuclear power programs to be developed and managed safely and securely, it is important that countries have domestic “good governance” characteristics that will encourage proper nuclear operations and management:[7]

These characteristics include low degrees of corruption (to avoid officials selling materials and technology for their own personal gain as occurred with the A.Q. Khan smuggling network in Pakistan), high degrees of political stability (defined by the World Bank as “likelihood that the government will be destabilized or overthrown by unconstitutional or violent means, including politically-motivated violence and terrorism”), high governmental effectiveness scores (a World Bank aggregate measure of “the quality of the civil service and the degree of its independence from political pressures [and] the quality of policy formulation and implementation”), and a strong degree of regulatory competence.[7]

International cooperation[edit]

Treaty on the Non-Proliferation of Nuclear Weapons[edit]

Main article: Treaty on the Non-Proliferation of Nuclear Weapons

At present, 189 countries are States Parties to the Treaty on the Nonproliferation of Nuclear Weapons, more commonly known as the Nuclear Non-Proliferation Treaty or NPT. These include the five Nuclear Weapons States (NWS) recognized by the NPT: the People's Republic of China, France, Russian Federation, the UK, and the United States.

Notable non-signatories to the NPT are Israel, Pakistan, and India (the latter two have since tested nuclear weapons, while Israel is considered by most to be an unacknowledged nuclear weapons state). North Korea was once a signatory but withdrew in January 2003. The legality of North Korea's withdrawal is debatable but as of 9 October 2006, North Korea clearly possesses the capability to make a nuclear explosive device.

International Atomic Energy Agency[edit]

Main article: International Atomic Energy Agency

The IAEA was established on 29 July 1957 to help nations develop nuclear energy for peaceful purposes. Allied to this role is the administration of safeguards arrangements to provide assurance to the international community that individual countries are honoring their commitments under the treaty. Though established under its own international treaty, the IAEA reports to both the United Nations General Assembly and the Security Council.

The IAEA regularly inspects civil nuclear facilities to verify the accuracy of documentation supplied to it. The agency checks inventories, and samples and analyzes materials. Safeguards are designed to deter diversion of nuclear material by increasing the risk of early detection. They are complemented by controls on the export of sensitive technology from countries such as UK and United States through voluntary bodies such as the Nuclear Suppliers Group. The main concern of the IAEA is that uranium not be enriched beyond what is necessary for commercial civil plants, and that plutonium which is produced by nuclear reactors not be refined into a form that would be suitable for bomb production.

Scope of safeguards[edit]

See also: Brazilian–Argentine Agency for Accounting and Control of Nuclear Materials

Traditional safeguards are arrangements to account for and control the use of nuclear materials. This verification is a key element in the international system which ensures that uranium in particular is used only for peaceful purposes.

Parties to the NPT agree to accept technical safeguard measures applied by the IAEA. These require that operators of nuclear facilities maintain and declare detailed accounting records of all movements and transactions involving nuclear material. Over 550 facilities and several hundred other locations are subject to regular inspection, and their records and the nuclear material being audited. Inspections by the IAEA are complemented by other measures such as surveillance cameras and instrumentation.

The inspections act as an alert system providing a warning of the possible diversion of nuclear material from peaceful activities. The system relies on;

  1. Material Accountancy – tracking all inward and outward transfers and the flow of materials in any nuclear facility. This includes sampling and analysis of nuclear material, on-site inspections, and review and verification of operating records.
  2. Physical Security – restricting access to nuclear materials at the site.
  3. Containment and Surveillance – use of seals, automatic cameras and other instruments to detect unreported movement or tampering with nuclear materials, as well as spot checks on-site.

All NPT non-weapons states must accept these full-scope safeguards. In the five weapons states plus the non-NPT states (India, Pakistan and Israel), facility-specific safeguards apply. IAEA inspectors regularly visit these facilities to verify completeness and accuracy of records.

The terms of the NPT cannot be enforced by the IAEA itself, nor can nations be forced to sign the treaty. In reality, as shown in Iraq and North Korea, safeguards can be backed up by diplomatic, political and economic measures.

While traditional safeguards easily verified the correctness of formal declarations by suspect states, in the 1990s attention turned to what might not have been declared. While accepting safeguards at declared facilities, Iraq had set up elaborate equipment elsewhere in an attempt to enrich uranium to weapons grade. North Korea attempted to use research reactors (not commercial electricity-generating reactors) and a reprocessing plant to produce some weapons-grade plutonium.

The weakness of the NPT regime lay in the fact that no obvious diversion of material was involved. The uranium used as fuel probably came from indigenous sources, and the nuclear facilities were built by the countries themselves without being declared or placed under safeguards. Iraq, as an NPT party, was obliged to declare all facilities but did not do so. Nevertheless, the activities were detected and brought under control using international diplomacy. In Iraq, a military defeat assisted this process.

In North Korea, the activities concerned took place before the conclusion of its NPT safeguards agreement. With North Korea, the promised provision of commercial power reactors appeared to resolve the situation for a time, but it later withdrew from the NPT and declared it had nuclear weapons.

Additional Protocol[edit]

In 1993 a program was initiated to strengthen and extend the classical safeguards system, and a model protocol was agreed by the IAEA Board of Governors 1997. The measures boosted the IAEA's ability to detect undeclared nuclear activities, including those with no connection to the civil fuel cycle.

Innovations were of two kinds. Some could be implemented on the basis of IAEA's existing legal authority through safeguards agreements and inspections. Others required further legal authority to be conferred through an Additional Protocol. This must be agreed by each non-weapons state with IAEA, as a supplement to any existing comprehensive safeguards agreement. Weapons states have agreed to accept the principles of the model additional protocol.

Key elements of the model Additional Protocol:

  • The IAEA is to be given considerably more information on nuclear and nuclear-related activities, including R & D, production of uranium and thorium (regardless of whether it is traded), and nuclear-related imports and exports.
  • IAEA inspectors will have greater rights of access. This will include any suspect location, it can be at short notice (e.g., two hours), and the IAEA can deploy environmental sampling and remote monitoring techniques to detect illicit activities.
  • States must streamline administrative procedures so that IAEA inspectors get automatic visa renewal and can communicate more readily with IAEA headquarters.
  • Further evolution of safeguards is towards evaluation of each state, taking account of its particular situation and the kind of nuclear materials it has. This will involve greater judgement on the part of IAEA and the development of effective methodologies which reassure NPT States.

As of 3 July 2015, 146 countries have signed Additional Protocols and 126 have brought them into force. The IAEA is also applying the measures of the Additional Protocol in Taiwan.[9] Under the Joint Comprehensive Plan of Action, Iran has agreed to implement its protocol provisionally. Among the leading countries that have not signed the Additional Protocol are Egypt, which says it will not sign until Israel accepts comprehensive IAEA safeguards,[10] and Brazil, which opposes making the protocol a requirement for international cooperation on enrichment and reprocessing,[11] but has not ruled out signing.[12]

Limitations of safeguards[edit]

The greatest risk from nuclear weapons proliferation comes from countries which have not joined the NPT and which have significant unsafeguarded nuclear activities; India, Pakistan, and Israel fall within this category. While safeguards apply to some of their activities, others remain beyond scrutiny.

A further concern is that countries may develop various sensitive nuclear fuel cycle facilities and research reactors under full safeguards and then subsequently opt out of the NPT. Bilateral agreements, such as insisted upon by Australia and Canada for sale of uranium, address this by including fallback provisions, but many countries are outside the scope of these agreements. If a nuclear-capable country does leave the NPT, it is likely to be reported by the IAEA to the UN Security Council, just as if it were in breach of its safeguards agreement. Trade sanctions would then be likely.

IAEA safeguards can help ensure that uranium supplied as nuclear fuel and other nuclear supplies do not contribute to nuclear weapons proliferation. In fact, the worldwide application of those safeguards and the substantial world trade in uranium for nuclear electricity make the proliferation of nuclear weapons much less likely.

The Additional Protocol, once it is widely in force, will provide credible assurance that there are no undeclared nuclear materials or activities in the states concerned. This will be a major step forward in preventing nuclear proliferation.

Other developments[edit]

The Nuclear Suppliers Group communicated its guidelines, essentially a set of export rules, to the IAEA in 1978. These were to ensure that transfers of nuclear material or equipment would not be diverted to unsafeguarded nuclear fuel cycle or nuclear explosive activities, and formal government assurances to this effect were required from recipients. The Guidelines also recognised the need for physical protection measures in the transfer of sensitive facilities, technology and weapons-usable materials, and strengthened retransfer provisions. The group began with seven members – the United States, the former USSR, the UK, France, Germany, Canada and Japan – but now includes 46 countries including all five nuclear weapons states.

The International Framework for Nuclear Energy Cooperation is an international project involving 25 partner countries, 28 observer and candidate partner countries, and the International Atomic Energy Agency, the Generation IV International Forum, and the European Commission. Its goal is to "[..] provide competitive, commercially-based services as an alternative to a state’s development of costly, proliferation-sensitive facilities, and address other issues associated with the safe and secure management of used fuel and radioactive waste."[13]

According to Kenneth D. Bergeron's Tritium on Ice: The Dangerous New Alliance of Nuclear Weapons and Nuclear Power, tritium is not classified as a "special nuclear material" but rather as a by-product. It is seen as an important litmus test on the seriousness of the United States' intention to nuclear disarm. This radioactive super-heavy hydrogen isotope is used to boost the efficiency of fissile materials in nuclear weapons. The United States resumed tritium production in 2003 for the first time in 15 years. This could indicate that there is a potential nuclear arm stockpile replacement since the isotope naturally decays.

In May 1995, NPT parties reaffirmed their commitment to a Fissile Materials Cut-off Treaty to prohibit the production of any further fissile material for weapons. This aims to complement the Comprehensive Nuclear-Test-Ban Treaty of 1996 (not entered into force as of 2011) and to codify commitments made by the United States, the UK, France and Russia to cease production of weapons material, as well as putting a similar ban on China. This treaty will also put more pressure on Israel, India and Pakistan to agree to international verification.[citation needed]

On 9 August 2005, AyatollahAli Khamenei issued a fatwa forbidding the production, stockpiling and use of nuclear weapons. Khamenei's official statement was made at the meeting of the International Atomic Energy Agency (IAEA) in Vienna.[14] As of February 2006 Iran formally announced that uranium enrichment within their borders has continued. Iran claims it is for peaceful purposes but the United Kingdom, France, Germany, and the United States claim the purpose is for nuclear weapons research and construction.[15]

Unsanctioned nuclear activity[edit]

NPT Non Signatories[edit]

India, Pakistan and Israel have been "threshold" countries in terms of the international non-proliferation regime. They possess or are quickly capable of assembling one or more nuclear weapons. They have remained outside the 1970 NPT. They are thus largely excluded from trade in nuclear plant or materials, except for safety-related devices for a few safeguarded facilities.

In May 1998 India and Pakistan each exploded several nuclear devices underground. This heightened concerns regarding an arms race between them, with Pakistan involving the People's Republic of China, an acknowledged nuclear weapons state. Both countries are opposed to the NPT as it stands, and India has consistently attacked the Treaty since its inception in 1970 labeling it as a lopsided treaty in favor of the nuclear powers.

Relations between the two countries are tense and hostile, and the risks of nuclear conflict between them have long been considered quite high. Kashmir is a prime cause of bilateral tension, its sovereignty being in dispute since 1948. There is persistent low level bilateral military conflict due to alleged backing of insurgency by Pakistan in India and infiltration of Pakistani state backed militants in the Indian state of Jammu and Kashmir, along with the disputed status of Kashmir.

Both engaged in a conventional arms race in the 1980s, including sophisticated technology and equipment capable of delivering nuclear weapons. In the 1990s the arms race quickened. In 1994 India reversed a four-year trend of reduced allocations for defence, and despite its much smaller economy, Pakistan was expected to push its own expenditures yet higher. Both have lost their patrons: India, the former USSR, and Pakistan, the United States.

But it is the growth and modernization of China's nuclear arsenal and its assistance with Pakistan's nuclear power programme and, reportedly, with missile technology, which exacerbate Indian concerns. In particular, as viewed by Indian strategists, Pakistan is aided by China's People's Liberation Army.


This section needs to be updated. Please update this article to reflect recent events or newly available information.(April 2015)

Nuclear power for civil use is well established in India. Its civil nuclear strategy has been directed towards complete independence in the nuclear fuel cycle, necessary because of its outspoken rejection of the NPT. This self-sufficiency extends from uranium exploration and mining through fuel fabrication, heavy water production, reactor design and construction, to reprocessing and waste management. It has a small fast breeder reactor and is planning a much larger one. It is also developing technology to utilise its abundant resources of thorium as a nuclear fuel.

India has 14 small nuclear power reactors in commercial operation, two larger ones under construction, and ten more planned. The 14 operating ones (2548 MWe total) comprise:

  • two 150 MWe BWRs from the United States, which started up in 1969, now use locally enriched uranium and are under safeguards,
  • two small Canadian PHWRs (1972 & 1980), also under safeguards, and
  • ten local PHWRs based on Canadian designs, two of 150 and eight 200 MWe.
  • two new 540 MWe and two 700 MWe plants at Tarapur (known as TAPP: Tarapur Atomic Power Station)

The two under construction and two of the planned ones are 450 MWe versions of these 200 MWe domestic products. Construction has been seriously delayed by financial and technical problems. In 2001 a final agreement was signed with Russia for the country's first large nuclear power plant, comprising two VVER-1000 reactors, under a Russian-financed US$3 billion contract. The first unit is due to be commissioned in 2007. A further two Russian units are under consideration for the site. Nuclear power supplied 3.1% of India's electricity in 2000.

Its weapons material appears to come from a Canadian-designed 40MW "research" reactor which started up in 1960, well before the NPT, and a 100MW indigenous unit in operation since 1985. Both use local uranium, as India does not import any nuclear fuel. It is estimated that India may have built up enough weapons-grade plutonium for a hundred nuclear warheads.

It is widely believed that the nuclear programs of India and Pakistan used CANDU reactors to produce fissionable materials for their weapons; however, this is not accurate. Both Canada (by supplying the 40 MW research reactor) and the United States (by supplying 21 tons of heavy water) supplied India with the technology necessary to create a nuclear weapons program, dubbed CIRUS (Canada-India Reactor, United States). Canada sold India the reactor on the condition that the reactor and any by-products would be "employed for peaceful purposes only.". Similarly, the United States sold India heavy water for use in the reactor "only... in connection with research into and the use of atomic energy for peaceful purposes". India, in violation of these agreements, used the Canadian-supplied reactor and American-supplied heavy water to produce plutonium for their first nuclear explosion, Smiling Buddha.[16] The Indian government controversially justified this, however, by claiming that Smiling Buddha was a "peaceful nuclear explosion."

The country has at least three other research reactors including the tiny one which is exploring the use of thorium as a nuclear fuel, by breeding fissile U-233. In addition, an advanced heavy-water thorium cycle is under development.

India exploded a nuclear device in 1974, the so-called Smiling Buddha test, which it has consistently claimed was for peaceful purposes. Others saw it as a response to China's nuclear weapons capability. It was then universally perceived, notwithstanding official denials, to possess, or to be able to quickly assemble, nuclear weapons. In 1999 it deployed its own medium-range missile and has developed an intermediate-range missile capable of reaching targets in China's industrial heartland.

In 1995 the United States quietly intervened to head off a proposed nuclear test. However, in 1998 there were five more tests in Operation Shakti. These were unambiguously military, including one claimed to be of a sophisticated thermonuclear device, and their declared purpose was "to help in the design of nuclear weapons of different yields and different delivery systems".

Indian security policies are driven by:

  • its determination to be recognized as a dominant power in the region
  • its increasing concern with China's expanding nuclear weapons and missile delivery programmes
  • its concern with Pakistan's capability to deliver nuclear weapons deep into India

It perceives nuclear weapons as a cost-effective political counter to China's nuclear and conventional weaponry, and the effects of its nuclear weapons policy in provoking Pakistan is, by some accounts, considered incidental. India has had an unhappy relationship with China. After an uneasy ceasefire ended the 1962 war, relations between the two nations were frozen until 1998. Since then a degree of high-level contact has been established and a few elementary confidence-building measures put in place. China still occupies some territory which it captured during the aforementioned war, claimed by India, and India still occupies some territory claimed by China. Its nuclear weapon and missile support for Pakistan is a major bone of contention.

AmericanPresidentGeorge W. Bush met with India Prime MinisterManmohan Singh to discuss India's involvement with nuclear weapons. The two countries agreed that the United States would give nuclear power assistance to India.[17]


Over the several years, the Nuclear power infrastructure has been well established by Pakistan which is dedicated for the industrial and economic development of the country.[18] Its current nuclear policy is directed and aimed to promote the socio-economic development of the people as a "foremost priority";[19] and to fulfill the energy, economic, and industrial needs from the nuclear sources.[19] Currently, there are three operational mega-commercial nuclear power plants while three larger ones are under construction.[18] The nuclear power supplies 787MW (roughly ~3.6%) of electricity as of 2012, and the country has projected to produce 8800MW electricity by 2030.[20] Infrastructure established by the IAEA and the U.S. in the 1950s–1960s were based on peaceful research and development and economic prosperity of the country.[21]

Although the civil-sector nuclear power was established in the 1950s, the country has an active nuclear weapons program which was started in the 1970s.[21] The bomb program has its roots after East-Pakistan gained its independence as Bangladesh after India's successful intervention led to a decisive victory on Pakistan in 1971.[21] This large-scale but clandestine atomic bomb project was directed towards the development of ingenious development of reactor and military-grade plutonium.[citation needed] In 1974, when India surprised the outer world with its successful detonation of its own bomb, codename Smiling Buddha, it became "imperative for Pakistan" to pursue the weapons research.[22] According to leading scientist in the program, it became clear once India detonated the bomb, "Newton's third law" came into "operation", from then on it was a classic case of "action and reaction".[22] Earlier efforts were directed towards mastering the plutonium technology from France, but plutonium route was partially slowed down when the plan was failed after the U.S. intervention to cancel the project.[citation needed] Contrary to popular perception, Pakistan did not forego the "plutonium" route and covertly continued its indegenious research under Munir Khan and it succeeded with plutonium route in the early 1980s.[citation needed] Reacting on India's nuclear test (Smiling Buddha), Bhutto and the country's elite political and military science circle sensed this test as final and dangerous anticipation to Pakistan's "moral and physical existence."[23] With Aziz Ahmed on his side, Bhutto launched a serious diplomatic offense and aggressively maintained at the session of the United Nations Security Council:

Pakistan was exposed to a kind of "nuclear threat and blackmail" unparalleled elsewhere. ... If the world's community failed to provide political insurance to Pakistan and other countries against the nuclear blackmail, these countries would be constraint to launch atomic bomb programs of their own! ... [A]ssurances provided by the United Nations were not "Enough!"... 

— Zulfikar Ali Bhutto, statement written in "Eating Grass", source[24]

After 1974, Bhutto's government redoubled its effort, this time equally focused on uranium and plutonium.[25] Pakistan had established science directorates in almost all of her embassies in the important countries of the world, with theoretical physicist S.A. Butt being the director.[25] Abdul Qadeer Khan then established a network through Dubai to smuggle URENCO technology to Engineering Research Laboratories.[26][27][28][29][30][31] Earlier, he worked with Physics Dynamics Research Laboratories (FDO), a subsidiary of the Dutch firm VMF-Stork based in Amsterdam. Later after joining, the Urenco, he had access through photographs and documents of the technology.[5] Against the popular perception, the technology that A.Q. Khan had brought from Urenco was based on first generation civil rector technology, filled with many serious technical errors, though it was authentic and vital link for centrifuge project of the country.[citation needed] After the British Government stopped the British subsidiary of the American Emerson Electric Co. from shipping the components to Pakistan, he describes his frustration with a supplier from Germany as: "That man from the German team was unethical.[5] When he did not get the order from us, he wrote a letter to a Labour Party member and questions were asked in [British] Parliament."[5] By 1978, his efforts were paid off and made him into a national hero.[5] In 1981, as a tribute, President General Muhammad Zia-ul-Haq, renamed the research institute after his name.[5]

In early 1996, Prime ministerBenazir Bhutto made it clear that "if India conducts a nuclear test, Pakistan could be forced to "follow suit".[32][33] In 1997, her statement was echoed by Prime minister Nawaz Sharif who maintained to the fact that: "Since 1972, [P]akistan had progressed significantly, and we have left that stage (developmental) far behind. Pakistan will not be made a "hostage" to India by signing the CTBT, before (India).!"[34] In May 1998, within weeks of India's nuclear tests, Pakistan announced that it had conducted six underground tests in the Chagai Hills, five on the 28th and one on the 30th of that month. Seismic events consistent with these claims were recorded.

In 2004, the revelation of A.Q. Khan's efforts led to the exposure of many defunct European consortiums which had defied export restrictions in the 1970s, and of many defunct Dutch companies that exported thousands of centrifuges to Pakistan as early as 1976.[35] Many centrifuge components were apparently manufactured in MalaysianScomi Precision Engineering with the assistance of South Asian and German companies, and used a UAE-based computer company as a false front.[36]

It was widely believed to have direct involvement of the government of Pakistan.[37] This claim could not be verified due to the refusal of the government of Pakistan to allow IAEA to interview the alleged head of the nuclear black market, who happened to be no other than A.Q. Khan. Confessing his crimes later a month on national television, he bailed out the government by taking full responsibility.[37] Independent investigation conducted by IISS confirmed that he had control over the import-export deals, and his acquisition activities were largely unsupervised by Pakistan governmental authorities.[37] All of his activities went undetected for several years. He duly confessed of running the atomic proliferation ring from Pakistan to Iran and North Korea.[38] He was immediately given presidential immunity.[37] Exact nature of the involvement at the governmental level is still unclear, but the manner in which the government acted cast doubt on the sincerity of Pakistan.[37]

North Korea[edit]

Main article: North Korea and weapons of mass destruction § Nuclear weapons

The Democratic Peoples Republic of Korea (or better known as North Korea), joined the NPT in 1985 and had subsequently signed a safeguards agreement with the IAEA. However, it was believed that North Korea was diverting plutonium extracted from the fuel of its reactor at Yongbyon, for use in nuclear weapons. The subsequent confrontation with IAEA on the issue of inspections and suspected violations, resulted in North Korea threatening to withdraw from the NPT in 1993. This eventually led to negotiations with the United States resulting in the Agreed Framework of 1994, which provided for IAEA safeguards being applied to its reactors and spent fuel rods. These spent fuel rods were sealed in canisters by the United States to prevent North Korea from extracting plutonium from them. North Korea had to therefore freeze its plutonium programme.

During this period, Pakistan-North Korea cooperation in missile technology transfer was being established. A high level delegation of Pakistan military visited North Korea in August–September 1992, reportedly to discuss the supply of missile technology to Pakistan. In 1993, PMBenazir Bhutto repeatedly traveled to China, and the paid state visit to North Korea. The visits are believed to be related to the subsequent acquisition technology to developed its Ghauri system by Pakistan. During the period 1992–1994, A.Q. Khan was reported to have visited North Korea thirteen times. The missile cooperation program with North Korea was under Dr. A. Q. Khan Research Laboratories. At this time China was under U.S. pressure not to supply the M Dongfeng series of missiles to Pakistan. It is believed by experts that possibly with Chinese connivance and facilitation, the latter was forced to approach North Korea for missile transfers. Reports indicate that North Korea was willing to supply missile sub-systems including rocket motors, inertial guidance systems, control and testing equipment for US$50 million.

It is not clear what North Korea got in return. Joseph S. Bermudez Jr. in Jane's Defence Weekly (27 November 2002) reports that Western analysts had begun to question what North Korea received in payment for the missiles; many suspected it was the nuclear technology. The KRL was in charge of both uranium program and also of the missile program with North Korea. It is therefore likely during this period that cooperation in nuclear technology between Pakistan and North Korea was initiated. Western intelligence agencies began to notice exchange of personnel, technology and components between KRL and entities of the North Korean 2nd Economic Committee (responsible for weapons production).

A New York Times report on 18 October 2002 quoted U.S. intelligence officials having stated that Pakistan was a major supplier of critical equipment to North Korea. The report added that equipment such as gas centrifuges appeared to have been "part of a barter deal" in which North Korea supplied Pakistan with missiles. Separate reports indicate (The Washington Times, 22 November 2002) that U.S. intelligence had as early as 1999 picked up signs that North Korea was continuing to develop nuclear arms. Other reports also indicate that North Korea had been working covertly to develop an enrichment capability for nuclear weapons for at least five years and had used technology obtained from Pakistan (Washington Times, 18 October 2002).


Israel is also thought to possess an arsenal of potentially up to several hundred nuclear warheads based on estimates of the amount of fissile material produced by Israel.[39] This has never been openly confirmed or denied however, due to Israel's policy of deliberate ambiguity.[40]

An Israeli nuclear installation is located about ten kilometers to the south of Dimona, the Negev Nuclear Research Center. Its construction commenced in 1958, with French assistance. The official reason given by the Israeli and French governments was to build a nuclear reactor to power a "desalination plant", in order to "green the Negev". The purpose of the Dimona plant is widely assumed to be the manufacturing of nuclear weapons, and the majority of defense experts have concluded that it does in fact do that.[citation needed] However, the Israeli government refuses to confirm or deny this publicly, a policy it refers to as "ambiguity".

Norway sold 20 tonnes of heavy water needed for the reactor to Israel in 1959 and 1960 in a secret deal. There were no "safeguards" required in this deal to prevent usage of the heavy water for non-peaceful purposes. The British newspaper Daily Express accused Israel of working on a bomb in 1960.[41] When the United States intelligence community discovered the purpose of the Dimona plant in the early 1960s, it demanded that Israel agree to international inspections. Israel agreed, but on a condition that U.S., rather than IAEA, inspectors were used, and that Israel would receive advanced notice of all inspections.

Some claim that because Israel knew the schedule of the inspectors' visits, it was able to hide the alleged purpose of the site from the inspectors by installing temporary false walls and other devices before each inspection. The inspectors eventually informed the U.S. government that their inspections were useless due to Israeli restrictions on what areas of the facility they could inspect. In 1969, the United States terminated the inspections.

In 1986, Mordechai Vanunu, a former technician at the Dimona plant, revealed to the media some evidence of Israel's nuclear program. Israeli agents arrested him from Italy, drugged him and transported him to Israel, and an Israeli court then tried him in secret on charges of treason and espionage,[42] and sentenced him to eighteen years imprisonment. He was freed on 21 April 2004, but was severely limited by the Israeli government. He was arrested again on 11 November 2004, though formal charges were not immediately filed.

Comments on photographs taken by Mordechai Vanunu inside the Negev Nuclear Research Center have been made by prominent scientists. British nuclear weapons scientist Frank Barnaby, who questioned Vanunu over several days, estimated Israel had enough plutonium for about 150 weapons.[43]

In 2003, Libya admitted that the nuclear weapons-related material including these centrifuges, known as Pak-1, were acquired from Pakistan

the threat of nuclear proliferation Essay

1244 Words5 Pages

One of the foremost growing concerns in the modern globalized world is the increasing rate of nuclear proliferation. Coupled with the burgeoning number of nuclear devices is the threat of a terrorist possibly obtaining a weapon of such magnitude. While one could argue that the rising number of states with nuclear capability is a disturbing prospect, particularly as many pursue such capabilities without the approval of the “traditional” nuclear powers, terrorists in possession of nuclear arms presents the most horrific outlook concerning nuclear proliferation. Terrorist groups, unlike states, are not organized governmental bodies, which complicates any means of formalized diplomacy or negotiation. Furthermore, unlike as compared to a…show more content…

It is conceivable that nuclear weapons in the hands of such groups would be used in a manner both to wreak incredible destruction, and in a sort of religious homage to the relevant deity, particularly because “worldly consequences are not a central concern for religious terrorists, since they believe their actions are dictated by a divine authority,” (Stern, p.80).
Modern terrorists have come to the realization that “they cannot defeat the United States in a conventional war, but they can impose significant pain through acts of terrorism,” (Stern, p.5). After a century of American military, economic, and social success, the US has been elevated to the forefront of the global community. A defense budget of $401.7 billion makes the United States the dominant military force in the world, (2005 US Federal Budget). Furthermore, our history of success has established a general sentiment of invincibility among American citizens, and an attack on our civilian population would have tremendous ramifications, as was seen with the occurrence of September 11th. However, unlike al-Qaeda in Afghanistan under the Taliban, a nuclear attack may come from a group that does not enjoy the sponsorship of a state, making retaliation quite complicated. This sense of anonymity is another issue of terrorists with nukes that trumps a state with such capabilities. In the case of a state, there is a particular, defined, and easily identifiable party

Show More

0 Thoughts to “Proliferation Of Nuclear Weapons Essay

Leave a comment

L'indirizzo email non verrà pubblicato. I campi obbligatori sono contrassegnati *